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Abstract. Finite-size effects on the static and thermodynamical properties of small three-dimensional clus-
ters of identical charged particles confined by an harmonic trap are investigated using global optimization
and numerical simulations. The relative stabilities of clusters containing up to 100 particles are estimated
from the second energy derivatives, as well as from the energy gap between the two lowest-energy structures
at a given size. We also provide a lower bound for the number of permutationally independent minima, as a
function of size, up to n = 75. Molecular dynamics and exchange Monte Carlo simulations are performed to
get insight into the finite temperature behaviour of these clusters. By focusing on specific sizes, we illustrate
the interplay between the stable structures, the possible competition between different isomers, and the
melting point. In particular, we find that the orientational melting phenomenon known in two-dimensional
clusters has an equivalent form in some three-dimensional clusters. The vibrational spectra, computed for
all sizes up to 100, shows an increasing number of low-frequency modes, but comparing to hydrodynamical
theory reveals strong correlation effects. Finally, we investigate the effects of the trap anisotropy on the
general shape of Coulomb clusters, and on the melting point of a selected case.

PACS. 36.40.Mr Spectroscopy and geometrical structure of clusters – 36.40.Ei Phase transitions in clus-
ters – 64.60.Cn Order-disorder transformations; statistical mechanics of model systems – 68.65.-k Low-
dimensional, mesoscopic, and nanoscale systems: structure and nonelectronic properties

1 Introduction

Recent progresses in trap technologies have allowed clus-
ters containing up to hundred thousands of charged par-
ticles to be studied over relatively long time scales [1–3].
In the Drewsen group, large clusters of identical ions (the
so-called one-component plasma) stabilized in linear Paul
traps have been shown to form Coulomb crystals with
well-defined layer structures [2,4,5]. These authors have
also investigated the structure in two-component crys-
tals [6], and the structural transitions, including melt-
ing, induced by varying the trap parameters [7] or its
frequency [8]. Large crystals provide a convenient reser-
voir for cold atomic or molecular ions [9] that could be
used for other applications. Small sets of ions in well con-
trolled structural and thermodynamical states, especially
when arranged in strings, are promising in various fields,
such as high resolution spectroscopy [10], frequency stan-
dards [11] or quantum information [12,13].

Historically, the magnetic Penning trap was first used
to confine ions in clusters and cooling them down to stabi-
lize them [14]. Three-dimensional crystals of charged par-
ticles can also be obtained using micrometer-sized poly-
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mer particles, that are suspended in a radio-frequency gas
discharge [3,15]. Such mesoscopic particles carry a much
higher charge with respect to ions or molecules, which
leads to the formation of stable, crystal-like structures
at room temperature, while trapped ions form ordered
structures only at millikelvins, hence requiring assistance
of electron or laser cooling. However, the Coulomb inter-
action is affected (shielded) by the presence of opposite
charges in the plasma created upon electric discharge. Yet,
their larger individual size allow the clusters to be directly
visualized.

From a fundamental point of view, clusters of trapped
ions constitute a laboratory for studying the behaviour of
matter at the finite size scale. In very few cases, analyti-
cal theories have been developed [16,17]. However, and not
surprisingly, computer simulations have been much more
employed to assist in interpreting experiments, sometimes
anticipating them. Several groups have used numerical
methods to locate the most stable configurations of con-
fined charges interacting through the bare [18–23] or shiel-
ded [24] Coulomb forces. Saddle configurations and re-
arrangement pathways have been studied by Wales and
Lee [21]. Molecular dynamics (MD) simulations have been
employed [25–28] to determine the structure as well, but
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also the thermodynamic stability usually characterized by
the coupling parameter Γ = Z2e2/4πε0aWSkBT [29,30].
The Wigner-Seitz radius aWS, related to the density ρ
through 4πa3

WS/3 = 1/ρ, plays thus a role comparable to
the temperature T . In the bulk one-component plasma,
the crystal melts when Γ approaches the approximate
value Γ � 170 from above [29,31], or an equivalent melt-
ing temperature Tmelt = 1/170 as measured in reduced
units.

Finite systems usually melt at lower temperatures than
bulk systems [32], hence the critical parameter for a clus-
ter of trapped ions is expected to be larger. In his molec-
ular dynamics simulations of clusters containing 102, 103,
and 104 ions, Schiffer recently estimated the melting tem-
perature to be approximately 1/500, 1/278, and 1/209,
respectively [27]. He also found that the scaling of Tmelt

with cluster size depends on the fraction of ions in the
outer layer, such that the difference with the bulk melt-
ing temperature scales with that fraction. This is exactly
expressed as a function of the number n of particles as
∆Tmelt(n) ≈ n−1/3, which is also proportional to the in-
verse radius of the cluster. Such a scaling law is well-known
in the physics of atomic and molecular clusters [33]. An-
other expected feature of small systems is the stronger
and nonmonotonic size dependence of physical properties
as the size further decreases below a certain threshold [34].
For example, the variations in the melting point of small
sodium clusters can reach several tens of kelvin between
two neighbouring sizes [35]. Because they were obtained
on a very limited set of size, the results of Schiffer [27]
could not provide any evidence for such nontrivial effects.
In the 2D case, several numerical studies [36,37] including
our previous work [38] have reported significant finite size
effects in the melting of trapped ion clusters, particularly
for heterogeneous systems.

As shown by Berry, Wales, and their coworkers [39,40],
there is a very strong interplay between the structure
of a cluster and its dynamical and thermodynamical be-
haviours. In fact, the equilibrium thermodynamics of a
cluster is completely characterized by the topography of
its potential energy surface, or energy landscape [41]. Even
for simple interactions, the landscape can be quite compli-
cated and exhibit several basins or funnels in competition
with each other. This can give rise to a very rich thermody-
namic phenomenology, where the transition between the
single stable structure (the solid state) at zero tempera-
ture can evolve toward a fully melted state at high temper-
atures through several possible phases, including surface
melting [42] or surface reconstruction [43], multistep melt-
ing [44] and more generally structural transitions [45]. A
good illustration of these various phenomena is found in
Lennard-Jones clusters [42,43,45,46].

The present paper focuses on finite size effects in the
structural and thermodynamical properties of three-di-
mensional clusters of charged particles confined by har-
monic traps. Most of this paper deals with isotropic traps.
Beyond the geometries of the lowest-energy structures, we
have chosen to investigate other aspects of the global min-
ima, such as their stability as measured by the energy gap

to the second minimum. The search for isomers other than
the most stable allowed us to estimate a lower bound for
the number of permutationally independent isomers as a
function of increasing size. This number, which is thought
to increase exponentially with size [41,47], is also directly
affected by the interaction between particles, especially its
range [41,48]. As will be shown below, the number of min-
ima for trapped ion clusters also approximately follows an
exponential law as the size increases.

The finite temperature behaviour was explored numer-
ically using both molecular dynamics and Monte Carlo
(MC) simulations, and computing the canonical heat ca-
pacities and root mean square bond length fluctuation,
also known as the Lindemann index. As was observed for
two-dimensional clusters [38] these two methods provide
different but complementary information about melting
in the clusters. The latter quantity is very sensitive to
the relative motion of the particles in their shells, even
though the shells remain rigid. Conversely, the heat ca-
pacity is sensitive to the presence of several isomers on
the potential energy surface, and is the natural quantity
to consider to probe the equilibrium thermodynamics of
the phase transitions rounded by size effects. By perform-
ing systematic quenches of configurations gathered during
the Monte Carlo trajectories, we also relate the features
in the caloric curves to the properties of the underlying
energy landscape.

Another goal of the present paper is to determine the
vibrational modes of the trapped ion clusters and their size
dependence. Several groups have investigated the normal
modes and vibrational spectrum of two-dimensional clus-
ters [49–53]. In particular, the Peeters group has recently
shown that several modes exist with a frequency which
is nearly independent on the number of particles [52].
The vibrational modes in three-dimensional clusters of
charged particles have also received a significant attention
in the theoretical community, especially from Dubin and
Schiffer [54–56] but not only [57]. The former cited authors
developed an hydrodynamic theory to account for the sur-
face oscillations of a cluster of trapped ions, and investi-
gated the effects of correlations between particles, that are
not described in the continuous theory [54–56]. As we show
below, the vibrations in small three-dimensional clusters
are not well described by the hydrodynamic theory, even
though some features such as the constant breathing fre-
quency are well reproduced.

Finally, we have also investigated the effects of trap
anisotropy on the shape of small clusters, in the regime
where finite-size effects could be expected. As the trap
anisotropy is varied from low to high values, the cluster
shape changes from string-like to helicoidal, prolate ellip-
soidal, spherical, oblate ellipsoidal, then disc-like. These
structural transitions have been studied numerically by
Schiffer [58] and analytically by Dubin [17]. Here, we also
look at the more specific effects of size, and we determine
the magnitude of cluster size effects at the resolution of
single particles on the general shape diagram. Finally, we
also illustrate on a specific case how the anisotropy of the
trap can affect the melting temperature of the cluster.
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The article is organized as follows. In the next section,
we briefly describe the model and methods used to search
for the stable structures and different isomers of a given
cluster size, as well as some details about the numerical
simulations. The results on structural and thermodynam-
ical properties of clusters confined in an isotropic trap are
given and discussed in Section 3, while our results on clus-
ters in anisotropic traps are presented in Section 4. Some
concluding remarks are finally given in Section 5.

2 Methods

n identical, particles with the same mass m and charge q =
Ze are confined into a harmonic, but possibly anisotropic
trap potential with frequency ω0, so that the resulting po-
tential energy E of configuration R is written in physical
units as

E(R) =
∑

i<j

Z2e2

4πε0rij
+

1
2

∑

i

mω2
0

(
x2

i + y2
i + ρz2

i

)
. (1)

In this equation, xi, yi, zi are the Cartesian coordinates
of particle i in the centre of mass reference frame, and rij

is the distance between particles i and j, and ρ is the non-
dimensional anisotropy parameter. In most of this work,
an isotropic trap (ρ = 1) is chosen, but ρ will be allowed to
vary in Section 4. It is more convenient to work in reduced
units, by normalizing the energy to E0 and the distances
to r0 with

E0 =

[
mω2

0

(
Z2e2

4πε0

)2
]1/3

, (2)

and

r0 =
[

1
mω2

0

Z2e2

4πε0

]1/3

, (3)

respectively. The temperature scale is then fixed by E0/kB

or its inverse Γ known as the coupling parameter. The
frequency unit is naturally given by ω0. In the following,
we use reduced units for all these quantities, energies being
expressed in E0, temperatures in 1/Γ = E0/kB, radii in
r0, etc. Using reduced units also enables comparison with
previous work on infinite or finite one-component plasma
systems.

The stable structures were located with the basin-
hopping (or Monte Carlo+minimization) method [59], us-
ing a conjugate gradient procedure for local optimiza-
tions. For each size a basin-hopping search consisted of
10 000 quenches, with a particle step size of 1 unit of
distance. Due to the long range of the Coulomb interac-
tion, the number of permutationally independent isomers
is much smaller for the present confined clusters than for,
say, Lennard-Jones clusters [41]. By repeating the global
optimization search a large number of times, many iso-
mers could be gathered. All isomers were checked to be
real minima, and were further sorted according to their
potential energy and mean square radius.

The finite-temperature behaviour was investigated by
performing classical, constant-energy molecular dynamics

simulations, as well as exchange Monte Carlo (or par-
allel tempering) simulations in the canonical ensemble.
The velocity Verlet method was used to propagate the
cluster configuration and velocities, with a time step of
0.025 units. The initial conditions were chosen to reach a
specific total energy, without inducing any linear or an-
gular momentum. For each total energy, several runs of
106 steps were accumulated, following 105 steps left out
for equilibration.

Exchange Monte Carlo simulations were carried out
using 50 replicas, with temperatures allocated in a geo-
metric progression. For each replica, 106 MC cycles were
collected for the statistical averages after 105 equilibra-
tion cycles. Configurations of replicas were occasionally
exchanged with 10% probability. The replicas exchang-
ing their configurations were selected using the recent all-
exchange strategy [60]. A set of 1000 configurations peri-
odically saved for all replicas were quenched, in order to
relate the variations in the thermal averages and heat ca-
pacity to the topography of the potential energy surface.

3 Results for isotropic traps

In this section, we give our main results for the structural
and thermodynamical properties of ions confined by an
isotropic harmonic trap, as inferred from our optimization
and simulation methods.

3.1 Structure and stability

Three-dimensional clusters of trapped charged ions
generally exhibit onion-ring structure with multiple
shells [18–22], but also crystal-like (bcc) structures above
104 ions [23]. The shell structure is also well-known in two-
dimensional Wigner clusters (see [38] and references there-
in), where it leads to different types of motion involving
either orientational (or angular) or intershell (or radial)
displacements. The orientational motion occurs in general
at low energies or temperatures, which is consistent with
low energy barriers [21,38]. Conversely, intershell motion
is more closely related to melting, and requires a higher
temperature, as also indicated by higher energy barriers
for rearrangements [21,38].

We have determined the global minima of 3D ions in
an isotropic harmonic trap containing up to n = 100 iden-
tical particles, as well as a large set of isomers for each
cluster size. In the following, the energy of isomer i of a
n-particle cluster is denoted as Ei(n), with the global min-
imum standing as i = 1 or being simply denoted as E(n).
For convenience, we also describe the stable geometries as
a series of integer numbers (n1, n2, ...) characterizing the
number of particles in a given shell, from the core to the
outer shells.

Our results for the lowest energy structures agree with
the results of Beekman and coworkers [22], and will not be
detailed further. Instead we address the issue of relative
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Fig. 1. (a) Energy gap ∆E(n) = E2(n) − E1(n) between the
two lowest isomers and (b) second energy derivative E′′(n) =
E(n+1)+E(n−1)−2E(n), for clusters in an isotropic harmonic
trap, as a function of n.

stability of these global minima. Stability can be consid-
ered from different points of view. In a first approxima-
tion, the intrinsic thermodynamical stability is reflected
by the energy gap ∆E(n) = E2(n) − E1(n) between the
two lowest energy structures. As is customary in clus-
ter physics, the stability of a particular size can also be
quantified by comparing its binding energy to those of its
neighbours, thus calculating the second energy derivative
E′′(n) = E(n + 1) + E(n − 1) − 2E(n). The variations
of these two indicators with the number of particles are
represented in Figure 1.

The intrinsic thermodynamical stability characterized
by ∆E mostly shows low values, in agreement with the
work by Beekman et al. [22]. At small sizes, where there
are only very few isomers, the energy gap may be signifi-
cant. It is maximum at n = 19, which only has two isomers
(1, 18) and (19), but very small at size 17, for which two
different (1, 16) isomers exist in a narrow energy range.
Above n = 20 only few sizes (notably 40 and 56) are par-
ticularly stable, even though for 60, whose ground state is
(12, 48), we find a lower energy gap than in reference [22],
resulting from a low (1, 12, 47) isomer. This suggests that
our database of minima contains structures that are lower
in energy than in the work by Beekman and coworkers [22].

The second energy difference E′′(n) in Figure 1b shows
a general decreasing trend, not revealing any special sta-
bilities. Marginal peaks are seen at n = 12, 38 and, to a
lesser extent, 56. They are generally not correlated with
the appearance of new shells: for instance, all global min-
ima in the range 36–41 are based on the (6, p) motif. Nei-
ther do they match the variations in the energy gap ∆E(n)
between the two lowest isomers, except maybe for size 56.
Therefore the second energy difference is not expected to
be very helpful in interpreting dynamical or thermody-
namical data.

By repeating the basin-hopping search a large number
of times for each cluster size, the database of isomers was
seen to become stationary, hence we attempted to enu-
merate them, using the potential energy and mean square
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Fig. 2. Lower bound for the estimated number of minima for
clusters in an isotropic trap, as a function of size. The straight
line is an exponential fit.

radius as identification criteria. The number N of minima
is expected to grow exponentially with n, but this num-
ber is also primarily affected by the range of the inter-
particle potential [41,48], potentials with a shorter range
leading to more numerous isomers. In the present case, the
very long range of the Coulomb interaction tends to mini-
mize the number of isomers, allowing us to estimate it by
performing many thousands optimizations from random
structures. The number of permutationally independent
structures obtained this way is represented in Figure 2 as
a function of cluster size.

Obviously, our basin-hopping search only provides a
lower bound for the actual number of isomers. This is espe-
cially true for sizes above 70, for which a few more isomers
were discovered during the last series of 104 quenches. This
explains why we limited our search to size 75, without
pretending our collections to be exhaustive in the range
60–75. However, for sizes up to 60, we believe not to have
missed a large number of important structures.

Figure 2 clearly indicates that the number of permu-
tationally independent isomers grows exponentially with
cluster size, in agreement with the commonly accepted
conjecture [47]. The coefficients for the exponential fit are
rather small, and confirm that long-range potentials lead
to fewer minima. For instance, 13 ions confined in a 3D
harmonic trap exist in only two possible configurations,
namely (1, 12) and (13). For comparison, the 13-atom
Lennard-Jones cluster has more than 1500 different min-
ima [41]. Thus, even though global optimization of the po-
tential surface of equation (1) is a NP-hard problem, it is
still much simpler than for other clusters with short range
interactions, including Lennard-Jones or, worse, Girifalco
or high ρ Morse potentials.

3.2 Isomerization and melting: selected cases

The finite-temperature simulations were performed in two
ways. As is commonly used in the trapped ions commu-
nity [25–28], standard constant-energy molecular dynam-
ics trajectories were carried out to probe the dynamics
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Fig. 3. (Color online) Variations of the Lindemann index δ as
a function of temperature, obtained from molecular dynamics
simulations for selected clusters in an isotropic trap.

of melting. Here we calculate the root mean square bond
length fluctuation index δ to quantify the level of rigidity
in the cluster.

Monte Carlo simulations, improved with the all-ex-
change strategy [60], were also performed in the canonical
ensemble to get insight into the purely thermodynamical
behaviour of the clusters. This method was mainly used to
compute the canonical heat capacity. In principle, both the
MC and MD methods should give identical results, as far
as they ergodically explore the configuration space. How-
ever, we use here the two methods to get complementary
information. As was shown previously for the 2D prob-
lem [38], they do not necessarily agree with each other,
which also reflects the different nature of the microcanon-
ical and canonical ensembles for finite size systems.

All cluster sizes in the range 4 ≤ n ≤ 100 have been in-
vestigated, and we first focus on some specific sizes, which
were selected to illustrate various behaviours. Figure 3
shows the variations of the rms bond length fluctuation
index δ with internal temperature of the clusters. Here the
temperature is the microcanonical value obtained from the
average of the kinetic energy in constant-energy molecular
dynamics simulations, and it varies roughly linearly with
total energy.

For the four selected clusters, δ shows similar varia-
tions, that is essentially four plateaus separated by three
sharp rises. At very low temperatures, the clusters are in
a rigidlike state and oscillate around their lowest energy
structure. A first increase in the Lindemann index occurs
to values generally close to δ = 0.07, but lower in the
case of n = 25 (δ ∼ 0.04). At this point the clusters be-
come only partially rigid, and inspecting their structure
reveals that the inner shells move with respect to each
other. Above some higher temperature another steep rise
in the Lindemann index expresses radial melting of the
cluster. δ reaches then values close to 0.25. However, at
even higher temperatures, another increase in δ occurs,
with a somewhat broader character, leading to values in
the range 0.27–0.34. This transition to an even more fluid
state suggests that the previous state was still in a par-
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Fig. 4. (Color online) (a) Canonical heat capacities and (b)
mean square radius of selected clusters in an isotropic trap,
obtained from exchange Monte Carlo simulations. Note that
the temperature range differs from that of Figure 3.

tially ordered state. In this respect, the multi-step melting
process found here is comparable to what is seen in ionic
clusters [44], in which actual melting is rather hard to
detect on the variations of the Lindemann index alone.

The stability ranges of the intermediate phases of ori-
entational and radial melting are strongly dependent on
the number of particles. For instance, the smaller clus-
ter n = 14 orientationally melts near T � 0.8 × 10−4,
and radially melts at T � 1.5× 10−4, while for the larger
cluster n = 52 the orientationally melted phase sets at
T � 0.4 × 10−4 and ends at T � 3 × 10−3. The melting
temperatures, as defined from the increase of δ above 0.15,
are thus strongly size-dependent, as expected from small
finite systems [34], and in agreement with previous results
on two-dimensional trapped ions [37,38]. By comparison,
the temperature corresponding to the last increase in δ are
much more stable against variations in size, and is always
close to 10−2.

The configurational canonical heat capacities Cv(T )
of the four selected clusters are shown in Figure 4a in the
temperature range where they exhibit noticeable varia-
tions. To further interpret these data, we have also rep-
resented the variations of the thermally average cluster
mean square radius, normalized by N1/3 to enable com-
parison between the different sizes. As for the 2D case [38],
the general shape of these curves illustrates the changes
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from solid-like to liquid-like, then to gas-like phases hin-
dered by the confinement. The large drop in Cv at tem-
peratures near T = 1 is intrinsic to the potential r2 +1/r,
and is found also for two-dimensional clusters.

At low temperatures, the heat capacity per particle
reaches the classical Dulong-Petit limit Cv/kB → (3n −
6)/2n = 3/2 − 3/n. At higher temperatures T > 10−2, a
strong drop in the heat capacity marks the onset of the
expansion of the cluster toward the gas phase, clearly vis-
ible on the variations of the cluster radius in Figure 4b.
As the cluster expands, its becomes a gaslike fluid, in
contrast with the infinite one-component plasma at fixed
density which exhibits only a single phase transition. At
very high temperatures, the ions behave independently of
each other and the main interaction is that of the con-
finement. The radial distribution function is very flat in
this regime, in agreement with Schiffer [27], hence the
system can be effectively considered as a gas. For this
gas of non interacting particles, equipartition holds again:
Cv/kB → (3n − 6)/2n, as seen in Figure 4.

Between the solid-like and gas-like phases, one or sev-
eral intermediate liquid-like phases occur, as indicated by
corresponding features (peaks or bumps) in the heat ca-
pacity. With respect to the bulk [31] or even to large clus-
ters [27], the heat capacity peak is strongly smeared out by
the important size effects present in small clusters. They
are also qualitatively different, showing bumps or even ad-
ditional peaks. Such premelting features are not unusual
in atomic clusters [42–46], where they are usually followed
by the main melting peak. Here the preliminar bumps are
rather spectacular in the cases of n = 25 and n = 52,
where they are more intense than the final peak occurring
near T = 10−2. To our knowledge, only a very few ex-
amples of such exacerbated premelting phenomena have
been reported in the literature [46,62]. This is another
manifestation of the strong cluster size effects on thermo-
dynamics.

Comparing now Figures 3 and 4 we find no signature
of orientational melting on the heat capacity. This is actu-
ally not surprising, since orientational melting usually is
expected to involve similar isomers based on the same ra-
dial structure. As will be shown below, this does not nec-
essarily imply that the global minimum structure is the
only isomer to be visited. But the very similar energies of
the isomers involved in orientational melting do not lead
to significant latent heats or bumps in the heat capacity,
while they have strong consequences on the Lindemann
index. The dynamical melting temperature, at which δ
increases above 0.15, generally differs from the thermody-
namical melting temperature where the heat capacity is
maximum. However, we find that the temperature where
the rms bond length fluctuation exhibits its last increase
above 0.27–0.34 closely matches the temperature of the
last peak in the heat capacity. At this temperature close
to 10−2, the reduced mean square radii of all clusters con-
verge to about 0.95. This suggests a more robust definition
of the melting temperature, which reconciles both dynami-
cal and thermodynamical definitions, and naturally agrees
in the bulk limit of the free one-component plasma.
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Fig. 5. Temperature-dependent isomer spectra obtained from
quenching Monte Carlo trajectories, for clusters with n = 25
(upper panel) or n = 38 (lower panel) in an isotropic trap,
as a function of temperature. For n = 38, the inset highlights
the structural transition between the two first isomers, having
both the (6, 32) radial composition.

To further analyse the caloric curves of Figure 4
in terms of the properties of the potential energy sur-
face, especially its minima, we have performed systematic
quenches of the MC trajectories, minimizing 1000 config-
urations for each replica. The isomers spectra are shown
in Figure 5 for cluster sizes n = 25 and 38.

The 25-particle cluster has four distinct isomers, ener-
getically ordered as (2, 23), (3, 22), (1, 24), and (4, 21),
respectively. The heat capacity of this cluster shows two
peaks at the temperatures 4×10−3 and 10−2, respectively.
These temperatures correspond only approximately to the
onset of appearances of isomers 2 (near T ∼ 10−3) and
3 and 4 (T ∼ 2 × 10−2). The quantitative disagreement
between the peak temperatures and the appearance tem-
peratures indicates that the entropy contributions of the
isomers are important.

The case of the 38-particle cluster is quite interest-
ing. For this system the global minimum is nearly de-
generate with another isomer of the same radial com-
position, namely (6, 32). The corresponding transition
between these isomers occurs around T = 5 × 10−5, and
does not involve any significant latent heat, no peak be-
ing visible in the heat capacity. Most other isomers appear
near T = 10−2, consistently with the marked peak in Cv

in Figure 4. The absence of signature of the preliminary
structural transition on the variations of the Lindemann
index is the consequence of the high energy barrier for re-
arrangement between the two isomers. Even though this
rearrangement can be seen as a relative orientational mo-
tion between the two shells, the isomers involved are not
accessed too early in the molecular dynamics simulations.
This is therefore a case where the orientational motion can
be hindered by significant barriers, such a situation which
was first reported by Wales and Lee [21]. The MD simula-
tions performed for this cluster at low energies cannot be
ergodic when starting from the global minimum, until the
total energy exceeds the energy barrier for rearrangement
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Fig. 6. (Color online) Melting temperatures of clusters in an
isotropic trap, obtained from the basic Lindemann criterion
δ > 0.15 (empty squares), the absolute maximum in the heat
capacity (full circles), or from its last maximum (triangles), as
a function of size.

between the two lowest isomers. In contrast, the exchange
Monte Carlo simulations are able to sample the equilib-
rium between accessible basins on the energy landscape
without explicitly visiting the barrier regions.

3.3 Finite-size effects on the melting point

From the previous analysis, it seems clear that the two
simulation methods used in this work do not exactly con-
vey the same information, partly because they do not sam-
ple configuration space similarly. More importantly, they
emphasize that a complete picture of the dynamics and
thermodynamics of clusters of trapped ions cannot be ob-
tained using one of these methods alone. This is obvious on
the melting temperature, whose value critically depends
on the way it is defined. In the four cases studied above,
the standard Lindemann criterion and the usual thermo-
dynamical definition based on the heat capacity maximum
disagree significantly with each other. Agreement could
only be reached by considering the highest-temperature
increase of δ above 0.27 and maximum in Cv. This is in
fact not specific to these four cases, but seems to hold for
other cluster sizes as well. We have represented in Figure 6
the variations of the melting temperatures inferred from
the standard Lindemann index (δ > 0.15), the absolute
maximum in the heat capacity, and the temperature of
the highest-temperature peak in Cv, for all cluster sizes in
the range n ≤ 100.

The melting temperature based on the heat capacity
absolute maximum systematically exceeds the dynamical
melting temperature based on δ > 0.15, by a typical or-
der of magnitude. Only occasionally the two temperatures
agree, within a factor 2–3, as in the cases of n = 11, 13, 15,
25, 43, 45, 50, 64, and 69. The two temperatures extracted
from the heat capacity maxima often coincide, but not al-
ways. As seen on our previous four examples, the melting
temperature should be more reliably defined from the last
maximum in Cv, not from its absolute maximum. The

variations of this quantity show a decreasing tendency,
while the dynamical temperature based on δ shows an
overall increase. As the cluster grows, it becomes more
compact and the core shells resist better to orientational
melting. Following previous work on atomic clusters [61,
63], melting at the finite-size scale is then expected to
evolve toward a single-step, first-order like process where
the highest-temperature peak is the highest, and the pre-
melting and multi-step melting phenomena are attenu-
ated.

The dynamical melting temperature of large sizes is
about 2 × 10−3, in agreement with the value of the crit-
ical parameter Γ ∼ 500 reported by Schiffer for the 100-
ion cluster [27], also obtained using MD simulations. The
canonical heat capacity of this cluster shows a broad peak
at this temperature, also with a similar height (latent
heat), hence consistent with reference [27] as well. How-
ever, it exhibits another peak, higher and centered at
T ∼ 7 × 10−2, which again explains the different values
found for n = 100 in Figure 6. Thus we believe that the
simulations performed by Schiffer, though they partially
agree with ours in a limited low-temperature range, are
incomplete to reveal the actual melting point of this clus-
ter.

Using any of the three definitions, the variations of
the melting temperature with the number of particles is
strongly non-monotonic. Interestingly, we do not find any
particular correlation between the melting temperature
extracted from the heat capacity and the energy gap ∆E
shown in Figure 1a, suggesting that the peaks in Cv are
caused by the sudden appearance of bunches of isomers.
The relatively weak role of the specific second isomer was
already illustrated above for n = 52. The melting tem-
perature do not correlate much with the second energy
difference, confirming the poor role of geometric magic
numbers on these 3D trapped ions clusters.

3.4 Vibrational spectra

Several authors have experimentally or theoretically in-
vestigated the normal modes and vibrational frequencies
of two-dimensional [49–53] and three-dimensional [54–57].
Recently, Nelissen and coworkers calculated the frequency
spectrum of such planar clusters numerically, and inter-
preted their results with the solution of an hydrodynam-
ical model due to Ye and Zaremba [64]. They found that
some frequencies do not vary significantly with the num-
ber of particles, and that these frequencies are generally
associated with low vorticity eigenvectors.

The hydrodynamic theory for three-dimensional clus-
ters [54] treats the system as a cold fluid, and predicts
that incompressible modes of spheroidal shapes are char-
acterized by the set of frequencies ω�, for integers � > 0:

ω2
� =

�

2� + 1
ω2

p, (4)

where ωp = 3ω0 is the frequency for compressible modes,
also known as the plasma frequency. The normal modes
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Fig. 7. (a) Vibrational spectrum of the lowest-energy structure
for clusters in an isotropic trap, as a function of size. (b) Den-
sity of vibrational states accumulated for sizes 90 ≤ n ≤ 100.

are fully described by Dubin and Schiffer [54,55] within
cold fluid theory. Each mode � is further characterized by
another quantum number m varying between −� and +�,
which determines the degree of variation of the mode po-
tential. According to hydrodynamic theory, all vibrational
frequencies thus lie in the range

√
3ω0 ≤ ω ≤ 3ω0/

√
2.

We have calculated the spectrum of vibrational fre-
quencies {ωi} of the present 3D clusters by diagonalizing
the second derivative matrix of potential energy. The spec-
tra are represented in Figure 7a as a function of n. As for
the 2D case, some frequencies seem to be always present
for all sizes. Besides the six zero eigenvalues corresponding
to global translations and rotations, the breathing mode
ω = 3ω0 = ωp is seen as an horizontal line. Conversely
to the two-dimensional case, the frequency spectrum is
bounded from above by the breathing mode ω = 3, in
agreement with cold fluid continuous theory [54].

On the right (b) panel of Figure 7, the density of vi-
brational states obtained by accumulating the spectra for
sizes in the range 90 ≤ n ≤ 100 reveals that more and
more modes grow near ω = 1.2ω0 and ω = 2ω0, and even
more at low frequencies ω → 0. This is another important
contrast with the two-dimensional situation, in which the
relative density of low frequency modes was seen to de-
crease at large n [52]. There are no accumulation of modes
toward ωp/

√
2, as is predicted by the hydrodynamic the-

ory for large sizes and � → ∞. This indicates that, at the
scale of the present clusters n ≤ 100, cold fluid theory
may not yet be appropriate for describing elementary vi-
brations. We can also compare the present DOS with the
densities numerically calculated by Dubin and Schiffer for
a 1000-particle cluster, and for the periodic fcc and bcc
one-component plasma [55]. These authors found essen-
tially similar shapes for the DOS, with two main broad
peaks centered around 0.9ω0 and 2.8ω0. For the finite sys-
tem, the additional surface modes appear near 3ω0/

√
2, in

agreement with cold fluid theory [54]. The density accu-
mulated here for clusters having between 90 and 100 par-
ticles shows a very different shape, with an exceedingly

Table 1. Breathing frequency and associated rank for icosa-
hedral atomic Lennard-Jones clusters. The frequency is given
in reduced LJ units.

Cluster Breathing frequency Rank
LJ13 15.1 4/33
LJ55 10.9 101/159
LJ147 8.4 376/435
LJ309 6.9 871/921
LJ561 5.8 1627/1677

large number of low-frequency modes, and no clear signa-
ture of the surface modes.

That the breathing mode is the hardest is not a gen-
eral feature of trapped ion clusters: this feature is not
present in two-dimensional clusters. Neither is it a prop-
erty of general three-dimensional clusters. We have cal-
culated the vibrational spectra of atomic clusters bound
by Lennard-Jones forces, and identified the rank n of the
breathing mode among the entire spectra of k modes. Here
the rank n/k is defined for increasingly hard modes, hence
rank 1/k means that the breathing mode is the hardest,
and k/k means the softest. The breathing frequency (in
Lennard-Jones units) and the associated rank are given in
Table 1 for a selection of icosahedral LJ clusters.

The above results for LJ clusters were confirmed by
looking at other clusters bound by ionic (sodium fluoride)
or many-body (sodium) forces, and by adding an harmonic
trap. By minimizing random structures of 3D trapped ion
clusters containing up to 1000 particles, we have checked
that all frequencies are indeed lower than 3. This property
does not hold when the interaction between particles has
a shorter or a longer range than the bare Coulomb inter-
action, therefore it results from the specific combination
of dimensionality and interaction potential, as well as the
presence of the harmonic trap. This property is consistent
with the predictions of hydrodynamic theory [54].

4 Clusters confined in anisotropic traps

In experiments built with the linear Paul trap, the ra-
diofrequency can be tuned to change the shape of the ion
clouds [7,8]. Such shape transitions were already discussed
in the light of early molecular dynamics simulations [18,
25,58]. In particular, Schiffer [58] investigated systemati-
cally the critical anisotropy parameters at which the sta-
ble structure evolves from linear to zigzag, then helicoidal,
three-dimensional, and eventually planar. His results were
soon after analytically interpreted by Dubin who approxi-
mated the clusters with a homogeneous continuous distri-
bution [17].

4.1 Finite size effects on the shape diagram

In their respective works, Schiffer [58] and Dubin [17] in-
vestigated the general properties of shapes and shape tran-
sitions in a broad range of cluster sizes. Here we have
repeated the optimizations of Schiffer, by looking at all



F. Calvo and E. Yurtsever: Thermodynamics of trapped Coulomb clusters 89

10 100 1000
Cluster size n

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

T
ra

p 
an

is
ot

ro
py

 ρ

1D

2D

3D

2.7 n −1.75

1.13 n0.54

Fig. 8. Shape diagram for clusters in an anisotropic trap. For
increasing anisotropy ρ, the clusters change from quasi linear
(1D), to ellipsoids (3D), to planar (2D). The two straight lines
are fits from the numerically determined critical anisotropies
at particular sizes in the range n ≤ 1000.

sizes n up to 50, and several larger sizes, aiming at evi-
dencing possible finite-size effects. For each size, the global
minimum obtained for the isotropic trap was further min-
imized for increasing or decreasing ρ. Planar configura-
tions were detected using the definition max(|zi|) < 0.1.
Similarly, linear configurations are defined according to
max(

√
x2

i + y2
i ) < 0.1. We do not distinguish here be-

tween the purely linear, zigzag, and helicoidal configura-
tions, which are not expected to give rise to strong finite
size effects.

The global shape diagram we calculated is represented
in Figure 8. The 1D → 3D → 2D shape transitions are cor-
rectly characterized by approximate scaling laws, whose
exponents agree well with those of references [17,58].
The logarithmic corrections suggested by Dubin for the
1D → 3D transition are probably not important yet at the
size n = 1000. In the range n ≤ 50, the particle-resolved
finite size effects are rather weak in general, especially
for the 1D → 3D transition at low anisotropies. The pla-
nar transition is slightly more affected, some deviations
around the power law ρ2D(n) = 1.13n0.54 being seen near
n = 21.

The present results show that the shape of the clusters
is not too sensitive with respect to the exact number of
particles, and that it essentially follows the laws of an
incompressible fluid [17].

4.2 Influence of anisotropy on the caloric curves

While the trap anisotropy smoothly influences the shape
of a cluster of trapped ions, it has stronger consequences
on its thermal stability. We have determined the global
minimum of the specific cluster size n = 20 for increasing
values of ρ across the 1D → 3D and 3D → 2D transi-
tions. The isotropic 20-particle cluster has a relatively high
thermodynamical melting temperature Tmelt � 0.016. We
have carried out exchange Monte Carlo simulations for
an anisotropy parameter spanning 30 values in the range
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Fig. 9. (Color online) Heat capacities for the 20-particle clus-
ter in an anisotropic trap, for several anisotropy ratios ρ. The
variations of the melting point with ρ are given in the inset,
the horizontal dashed line being the result for perfectly planar
clusters (ρ → ∞). In the inset also, the vertical dotted lines
indicate the critical values for the 1D → 3D and 3D → 2D
shape transitions.

10−2 ≤ ρ ≤ 10, the two shape transitions occurring
near ρ1D � 0.015 and ρ2D � 5.45, respectively. We did
not attempt to use molecular dynamics simulations for
anisotropic traps, due to the non conservation of angular
momentum resulting from the loss of rotational invariance.

Three typical heat capacity curves are shown in Fig-
ure 9 for ρ = 10−2, 1, and 6, corresponding to 1D, 3D,
and 2D shapes, respectively. The anisotropy of the trap
has dramatic consequences on the caloric curves. For a
large part, these effects are due to changes in the stable
structures and the ordering between isomers. In particu-
lar, the number of isomers itself is strongly affected by ρ.
This is particularly obvious at low anisotropies: the 1D
cluster has a single isomer and exhibits a single solid-
gas transition without a real intermediate liquid phase.
This explains its rather high melting temperature, close
to 0.054. As the anisotropy of the trap crosses 1.5× 10−2,
the cluster becomes three-dimensional, but remains as a
prolate ellipsoid until ρ equals 1. In the isotropic case,
premelting effects are visible on the heat capacity, which
exhibits a broad bump centered around T � 6.3 × 10−4.
At ρ = 6, the cluster is planar, and shows a single step
melting process with a rather high and narrow peak near
T = 0.019.

The size effects on the dependence of cluster properties
with respect to ρ are magnified in the inset of Figure 9,
where the variations of the melting point, defined from the
highest temperature Cv peak in case several are present,
are represented as a function of ρ. In the 3D regime, that
is for 0.015 ≤ ρ ≤ 5.45, the change in the number of
isomers and their relative energies and entropies yields
significant changes in the melting temperature, especially
near ρ ∼ 0.5 and ρ ∼ 1−2. However, as the cluster be-
comes oblate, its melting point smoothly converges to that
of the bidimensional system found at ρ → ∞ [38]. This
is not true for the 1D case obtained at low ρ, because
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the distance between neighbouring particles diverges as
ρ → 0 [17].

The variations in the melting point with the trap anis-
otropy are non trivial, and we expect them to be also
dependent on the number of particles, as was previously
shown in the case of the isotropic trap. This will prevent
one from constructing a detailed and quantitative (n, ρ)
diagram at various temperatures, but it would be inter-
esting to study the effects of ρ on the melting of larger
clusters.

5 Conclusions

Clusters of identical charged particles confined by har-
monic traps exhibit structural, dynamical, and thermo-
dynamical properties that strongly depend on the trap
anisotropy, the temperature, and the number of particles
itself. In the present work, we have addressed these is-
sues using numerical MC and MD simulations, for clusters
containing up to 100 ions. The relative stabilities of the
global minima, estimated by computing the second energy
difference, did not reveal any significant extra stabilities
that could reveal the completion of geometrical shells. The
thermal stability of the global minimum, as roughly quan-
tified by the energy gap between the two lowest energy
isomers, tends to be rather weak as well, especially for
sizes above 20.

The long range forces that operate for the present
clusters yield a rather small number N of permutation-
ally independent isomers at a given size, compared to e.g.
Lennard-Jones clusters. A lower bound for this number
was found as N (n) ≥ 0.57e0.09n, in agreement with the ex-
pected exponential increase of inherent structures [41,47].
While a more exhaustive sampling of minima could prob-
ably be achieved using global optimization tricks such as
taboo search, we stress that our enumeration stands as
the first for clusters of trapped ions. The effects of dimen-
sionality, trap anisotropy, and the range of the potential
could be investigated in the future.

Our results on the finite-temperature dynamics and
thermodynamics emphasized the very strong finite size ef-
fects exhibited by such small clusters. As in the case of
two-dimensional species [38], both the Lindemann index
and the heat capacity show several steps or bumps, respec-
tively, at increasing temperatures. We found the standard
definitions of the cluster melting point, based either on
the Lindemann index exceeding 0.15 or the heat capac-
ity being absolutely maximum, to be inconsistent with
each other. This reflects the different mechanisms probed
by the two parameters. The Lindemann index is sensitive
to orientational melting, which generally (but not always)
takes place at very low temperatures due to the low energy
barriers [21], then to radial melting, possibly in a multi-
step way. The canonical heat capacity, computed using the
more ergodic exchange Monte Carlo method, is sensitive to
the different minima and their ordering, and can exhibit
premelting peaks more intense than the actual melting
peak found at a higher temperature. Comparing the vari-
ations of δ, Cv and the thermally averaged mean square

radius, we propose to define the cluster melting point as
the temperature corresponding to the last (or highest tem-
perature) increase in the Lindemann index above 0.27, or
the last peak in the heat capacity. This definition seems
to generally reconcile the two indicators, a result which
was overlooked in our previous work on 2D clusters [38].

In some cases (n = 38), different isomers are accessi-
ble at very low temperatures without being seen on the
variations of the Lindemann index. Therefore the clus-
ter behaviour cannot be fully interpreted from a single of
the two methods and indicators. This seems an important
word of caution to the use of molecular simulation of fi-
nite size systems, as neither the MD or the MC method
are guaranteed to give the same information, but instead
they provide complementary data.

The variations of the melting point with increasing
number of particles have been obtained for clusters con-
taining up to n = 100 particles. These variations are
non-monotonic, but their fluctuations tend to decrease
for large clusters, as expected. The quantitative difference
with the melting point reported for the 100-particle clus-
ter by Schiffer [27] may be due to our finding of an extra
heat capacity peak at a higher temperature. Our value for
the melting point does not match the scaling law inferred
by this author from its numerical results on larger clusters.
This could be due to the structural transition known to
take place around 104 ions between shell-structured global
minima and surface-relaxed bcc lattices geometries [23].

The vibrational spectrum was calculated as a func-
tion of cluster size, up to the size 100. As in the 2D case,
some frequencies remain constant (the plasma frequency
ω = 3ω0 for breathing) or accumulate near fixed values
(ω = 1.2ω0 or 2ω0). However, the accumulation of modes
toward low frequencies is in clear contrast with the 2D
case [52], and we do not find evidence in the small clus-
ters studied here for incompressible surface modes with
frequencies in the range

√
3ω0 ≤ ω ≤ 3ω0/

√
2, that are

predicted by the hydrodynamical theory [54]. This indi-
cates that the correlations between particles, which are
not taken into account in the cold fluid theory [54], are
strongly important in the low-size regime [55,56].

Finally, we have investigated the case of anisotropic
traps, first looking at the finite size effects on the shape of
the lowest energy structure. While the general shape dia-
gram agrees with early investigations by Schiffer [58] and
Dubin [17], we found no evidence for strong size effects
on the values of ρ at which the cluster becomes essen-
tially one-dimensional or planar. In contrast, the effects
of changing the anisotropy were seen to be much more
significant on the heat capacity curves, resulting in strong
anisotropy-dependent melting points. The thermodynam-
ics of larger, nonspherical clusters could well depend on
the anisotropy parameter ρ as well, but probably more
smoothly. Recently, Komatsu and Abe found that evap-
oration was easier in nonspherical clusters, the emission
of particles being favored at the tips [65]. This could also
be the case for the present trapped ion clusters, but such
an investigation would require large numbers of particles
(n ∼ 1000) in order to minimize the very strong cluster
size effects found here in the small size regime.
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